
Eur. Phys. J. B 13, 257–264 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dy-
namical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction
band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are
linearized, and the value for the critical Coulomb repulsion Uc can be calculated analytically. For the sym-
metric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times
the square root of the second moment of the free (U = 0) density of states. This result is in good agree-
ment with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical
Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The
generalization to more complicated lattices is discussed. The “linearized DMFT” yields plausible results
for the complete geometry dependence of the critical interaction.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 introduction

The correlation-induced transition from a paramagnetic
metal to a paramagnetic insulator (the Mott-Hubbard
transition [1,2]) has been intensively studied within the
single-band Hubbard model [3–5]:

H =
∑
〈ij〉σ

tijc
†
iσcjσ + U

∑
i

c†i↑ci↑c
†
i↓ci↓. (1)

The model describes conduction electrons with spin σ
on a lattice with nearest-neighbor hopping matrix ele-
ment tij and a local Coulomb repulsion U . One of the
first approaches to describe the metal-insulator transition
in the half-filled Hubbard model has been the Hubbard-
III approximation [6]. The alloy-analogy solution predicts
a splitting of the density of states in upper and lower
Hubbard bands for large values of U . On decreasing U ,
the insulator-to-metal transition occurs when the Hub-
bard bands start to overlap. The critical interaction is ap-
proximately given by the free bandwidth: Uc ≈ W . The
Hubbard-III approximation, however, fails to describe the
Fermi-liquid properties in the metallic phase.

Later, the Mott-Hubbard transition has been de-
scribed within the Gutzwiller variational approach by
Brinkman and Rice [7]. Starting from the metallic side,
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the transition is marked by a diverging effective mass. The
critical interaction is found to be Uc = 8|e0| where e0 is
the kinetic energy of the half-filled band per particle for
U = 0. The Brinkman-Rice approach, however, fails to
describe the insulating phase above Uc.

A Dynamical Mean Field Theory (DMFT), which be-
comes exact in the limit of infinite spatial dimensions,
has been developed for the Hubbard model [8–10]. The
DMFT is able to yield a consistent description of
the metallic Fermi liquid for weak coupling as well as of the
Mott-Hubbard insulator for strong coupling. In practice,
however, the solution of the mean-field equations is by no
means a trivial task. In particular, for U 7→ Uc problems
may arise since the “mean field” ∆(ω) which has to be
determined self-consistently, develops a strong frequency
dependence on a vanishingly small energy scale.

The first calculations for temperature T = 0 were per-
formed using the so-called Iterated Perturbation Theory
(IPT) [10]. Within the IPT the highly correlated Fermi
liquid for U 7→ Uc is characterized by a narrow quasipar-
ticle peak that is well isolated from the Hubbard bands. As
a consequence the insulating gap appears to open discon-
tinuously at the metal-insulator transition. These charac-
teristics of the transition have been questioned by various
authors [11–13] so that the issue of the metal-insulator
transition for T =0 (and also for T > 0 [10,14]) cannot be
regarded as settled at the moment.
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Qualitatively, the IPT scenario for T = 0 is corrobo-
rated by recent non-perturbative calculations using the
Numerical Renormalization Group (NRG) method [15,
16]. However, the critical value for the transition is found
to be significantly lower as compared to the IPT result.
On the other hand, the NRG value for Uc is in remarkable
agreement with the result of the Projective Self-consistent
Method (PSCM) [17].

The value of the critical interaction for the Mott-
Hubbard transition is of great interest. Using the methods
mentioned above, an approximate calculation of Uc is pos-
sible. This, however, represents a rather difficult numer-
ical problem, the solution of which still depends on the
approximation used. Within the framework of DMFT, an
exact analytical result for the precise value of Uc is still
missing. Even an approximate analytical expression is not
available up to now.

With the present paper we propose a simplified treat-
ment of the mean-field equations (“linearized” DMFT)
which allows to obtain an explicit expression for Uc at zero
temperature. A fully numerical treatment of the DMFT
would leave us with a mere number for Uc and would
hardly show up the characteristic trends for different ge-
ometries unless a large number of cases were studied. Con-
trary, the linearized DMFT is able to yield at once the
complete geometry dependence of Uc. In our opinion this
outweights the necessity for further approximations.

The main idea of the linearized DMFT is to approxi-
mate the hybridization function for the coupling between
the impurity level and the conduction band by a single
pole. This is detailed in Section 2. The reliability of the
new approach is estimated by comparing the analytical
results for the Bethe and the hypercubic lattice in infinite
dimensions with the available numerical values from the
PSCM and the NRG in Section 3.1. A satisfactory agree-
ment is found. In the following we then demonstrate the
predictive power of the approach. The geometry depen-
dence of Uc is derived for a number of more complicated
lattice structures: inhomogeneous Bethe lattices (3.2 and
3.3) and hypercubic films in infinite and finite dimensions
(3.4). Finally, in Section 3.5 we discuss a first correction
beyond the linearized theory. Section 4 summarizes the
main results.

2 Linearized dynamical mean-field theory

A characteristic feature of the metal-insulator transition
is that the quasiparticle peak appears to be isolated from
the upper and the lower Hubbard band for U 7→ Uc and
T = 0. Whether or not there is a real gap, i.e. zero spectral
weight between the quasiparticle peak and the Hubbard
bands, is difficult to decide with any numerical method but
not very important for the present approach. Essentially,
our approach is based on two approximations:

(i) We assume that in the limit U 7→ Uc the in-
fluence of the high-energy Hubbard bands on the low-
energy (quasiparticle) peak is negligible. This can be spec-
ified as follows: within the DMFT the Hubbard model

is self-consistently mapped onto a single-impurity Ander-
son model (SIAM). In the effective SIAM, we divide the
conduction-electron degrees of freedom in a high-energy
part Hhigh (the Hubbard bands) and a low-energy part
Hlow (the quasiparticle peak). The Hamiltonian of the ef-
fective SIAM is then written as

HSIAM = Hhigh +Hhigh-imp +Himp +Hlow +Hlow-imp,
(2)

where the coupling of the impurity Himp ≡
∑
σ εdd

†
σdσ +

Ud†↑d↑d
†
↓d↓ to the high- (low-)energy part is denoted as

Hhigh-imp (Hlow-imp). The first approximation is then to
neglect the terms Hhigh and Hhigh-imp.

To motivate this step, consider the on-site Green func-
tion of the Hubbard model G(ω). Via the DMFT self-
consistency condition, G(ω) defines an effective SIAM. For
U 7→ Uc one indeed finds (e.g. within the NRG) that it
makes no significant difference for the low-energy part of
the solution of the resulting SIAM whether the full G(ω) is
considered or the Green function with the Hubbard bands
removed. This means that in the iterative solution of the
DMFT equations, the low-energy peak basically repro-
duces itself, and the high-energy degrees of freedom are
rather unimportant.

Alternatively, the first approximation can be charac-
terized as follows: let us (for a moment) look at the insu-
lating solution for U = Uc. Here the low-energy degrees
of freedom are absent (Hlow-imp, Hlow = 0) and the ap-
proximation reads: Hhigh +Hhigh-imp +Himp 7→ Himp. The
impurity spectral function for the left-hand side is given
by two Hubbard bands centered at ±U/2 while it is given
by two δ-peaks at ±U/2 for the right-hand side. So we
can state that in step (i) of the approximation the finite
bandwidth of the Hubbard peaks is neglected.

(ii) For U 7→ Uc, the width of the quasiparticle peak
vanishes. This fact is used for the second approximation:
we assume that in this limit it is sufficient to describe the
low-energy degrees of freedom by a single conduction-band
level, i.e. Hlow 7→

∑
σ εcc

†
σcσ. Thereby we disregard any

internal structure of the quasiparticle peak for U 7→ Uc.
Equivalently, this means that the hybridization function
can be represented by a single pole at ω = 0:

∆(ω) =
∆N

ω
· (3)

A given hybridization function ∆(ω) fixes the effective im-
purity problem. Due to

∆(ω) =
∑
k

V 2
k

ω − (εk − µ)
, (4)

the one-pole structure of ∆(ω) corresponds to an ns = 2
site single-impurity Anderson model (SIAM):

H2-site =
∑
σ

εdd
†
σdσ + Ud†↑d↑d

†
↓d↓

+
∑
σ

εcc
†
σcσ +

∑
σ

V (d†σcσ + h.c.) (5)
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with the hybridization strength V =
√
∆N .

Combining (i) and (ii) we obtain: HSIAM 7→ Himp +
Hlow + Hlow-imp 7→ H2-site. With these two approxima-
tions we can run through the DMFT self-consistency cycle.
In the one-pole ansatz (3) for the hybridization function,
∆N is the weight of the pole. The index N refers to the
Nth step in the iterative solution. Our goal is to calculate
∆N+1.

We restrict ourselves to the manifest particle-hole sym-
metric case. The chemical potential is set to µ = U/2.
The on-site energies in (5) are thus given by εd = tii = 0
and εc = U/2. For the hybridization strength we have
V =

√
∆N 7→ 0 as U 7→ Uc. The two-site impurity model is

simple enough to be solved analytically [18,19]. For small
V there are two peaks in the impurity spectral function at
ω ≈ ±U/2 as well as two peaks near ω = 0 which can be
considered as corresponding to the quasiparticle resonance
of the infinite (ns =∞) system. The weight of this “reso-
nance” can be read off from the exact solution [18]; up to
second order in V/U and for the particle-hole symmetric
case it is given by:

z = 2
18V 2

U2
=

36
U2

∆N . (6)

The two-site model equation (5) of course cannot display
Fermi-liquid behaviour due to the lack of a continuum of
conduction-band states near the Fermi level. The Fermi-
liquid properties of the metallic phase of the Hubbard
model are therefore lost within our approximation. What
remains, however, and what we are focussing on, is the
weight (6) of the resonances near ω = 0 which we iden-
tify as the quasiparticle weight z. Therefore we still use
a Fermi-liquid description for the low-energy part of the
self-energy Σ(ω):

Σ(ω) = U/2 + (1− z−1)ω +O(ω2) . (7)

For a homogeneous lattice and a local self-energy the
on-site Green function of the Hubbard model can be writ-
ten as:

G(ω) =
∫

dε
ρ(ε)

ω − (ε− µ)−Σ(ω)
, (8)

where ρ(ε) is the free (U = 0) density of states. Using
equation (7) we obtain:

G(ω) = z

∫
dε

ρ(ε)
ω − zε +G(incoh.)(ω), (9)

where the first part represents the coherent part of the
Green function (G(coh.)(ω)), and the second (incoher-
ent) part can be disregarded for small excitation energies
ω 7→ 0.

The integration can formally be carried out by means
of a continued-fraction expansion which for a symmetric
density of states ρ(ε) reads:

G(coh.)(ω) ≡ z
∫

dε
ρ(ε)
ω − zε = G(U=0)(z−1ω)

= 1/(z−1ω − b21/(z−1ω − b22/ . . . )). (10)

The expansion coefficients bn are related to the moments
Mn of the U = 0 density of states. The first coefficient b1
is given by:

b21 = M2 =
∫

dε ε2ρ(ε). (11)

The second moment M2 is easily calculated by evaluating
an (anti-)commutator of the form 〈[ [[c,H0]−,H0]−, c†]+〉
which yields:

M2 =
∑
j

t2ij . (12)

Thus we obtain:

G(coh.)(ω) =
z

ω − z2M2F (ω)
, (13)

where we have F (ω) = 1/ω +O(ω−2) for the remainder.
Starting from equation (3) in the Nth step, the DMFT

self-consistency equation,

∆(ω) = ω − (εd − µ)−Σ(ω)−G(ω)−1, (14)

yields a new hybridization function ∆(ω) for the (N+1)th
step. With equations (7, 13) we get:

∆(ω) = zM2F (ω) (15)

for low frequencies ω 7→ 0. Insisting on the one-pole
structure,

∆(ω) !=
∆N+1

ω
, (16)

for U 7→ Uc, we must have F (ω) = 1/ω. This amounts to
replacing the coherent part of the on-site Green function
by the simplest Green function with the same moments
up to the second one.

From equations (6, 13) we thus have:

∆N+1 =
36
U2

M2∆N . (17)

The coefficient of the (N + 1)th iteration step is thereby
expressed in terms of the coefficient of the Nth step. This
is our main result. For U = Uc the DMFT equations are
linearized, they are reduced to a simple linear algebraic
equation which determines the evolution of a single pa-
rameter (∆N ) under subsequent iterations.

The linearized mean-field equation (17) has only one
non-trivial solution with ∆N+1 = ∆N which occurs for
U = Uc with U2

c = 36M2. Any U < Uc gives ∆N+1/∆N >
1, so that ∆N increases exponentially with iteration num-
ber. This indicates the breakdown of the one-pole ap-
proximation. For any U > Uc the weight ∆N decreases
exponentially with increasing iteration number. This cor-
responds to the vanishing of the quasiparticle peak in the
insulating regime. Consequently, Uc has the meaning of
the critical interaction for the Mott-Hubbard transition
and its value is given by:

Uc = 6

√∫
dε ε2ρ(ε) = 6

√∑
j

t2ij . (18)
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For a lattice with nearest-neighbor coordination number
q and hopping integral t = |tij | between nearest-neighbors
i and j, we have: Uc = 6t

√
q.

The result (18) has been derived within the DMFT
which becomes exact in the limit q 7→ ∞. With the
usual scaling for the hopping integral, t = t∗/

√
q and

t∗ = const. [8], we have:

Uc = 6t∗. (19)

However, equation (18) may also be used for finite-
dimensional systems where the DMFT is effectively the
approximation of a purely local self-energy functional.

3 Discussion

3.1 Bethe and hypercubic lattice

For the Bethe lattice with infinite coordination number
and scaling t = t∗/

√
q, the free bandwidth is given byW =

4t∗. So we expect from equation (19) the Mott-Hubbard
metal-insulator transition to occur at Uc = 1.5W . This
result is in very good agreement with the result from
the Projective Self-consistent Method (PSCM) [10,17]
Uc,PSCM ≈ 1.46W and with recent calculations using the
Numerical Renormalization Group (NRG) method [16]
which yield Uc,NRG ≈ 1.47W . It also agrees well with
the value of Uc ≈ 1.51W obtained in the NRG calcula-
tions of Shimizu and Sakai [20]. The earlier IPT result
Uc,IPT ≈ 1.65W [10] overestimates the critical U as com-
pared to the other, non-perturbative methods. The Ran-
dom Dispersion Approximation (RDA) [13] predicts a con-
siderably lower critical value Uc,RDA ≈ W . The origin of
this discrepancy, however, is presently not clear.

On the infinite-dimensional hypercubic lattice with the
scaling t = t∗/

√
q, we expect the metal-insulator transi-

tion to occur at Uc = 6t∗. Again, this agrees well with the
NRG calculations [16] where the value Uc ≈ 5.80t∗ has
been found.

The existence of a metal-insulator transition in the hy-
percubic lattice at a finite Uc is not at all clear, considering
the fact that the free density of states is Gaussian, i.e. has
no cutoff. In any case, the actual bandwidth (which is infi-
nite for a Gaussian density of states) cannot play a role for
the value of Uc. It is much more plausible that it is the ef-

fective bandwidth (which is proportional to
√∫

dερ(ε)ε2)
that has to be taken as a measure for Uc.

Our analysis also shows that Uc is roughly independent
of the details of the lattice structure and only depends on
the local quantity

∑
j t

2
ij . This result can quite naturally

be understood when the electrons are considered as get-
ting localized at the transition. In this case the electrons
would only see their immediate surrounding which is the
same for both the infinite dimensional Bethe and the hy-
percubic lattice.

3.2 Two-sublattice model

Let us now work out the predictions of the linearized
DMFT for inhomogeneous lattices, i.e. lattices with re-
duced (translational) symmetries. The presumably sim-
plest but non-trivial case is a Bethe lattice that consists
of two non-equivalent sublattices Q1 and Q2 where each
site of Qα has qα nearest neighbors that belong to Qα
(with α = 2 for α = 1 and α = 1 for α = 2). We con-
sider the limit of infinite coordination numbers q1, q2 7→ ∞
with 0 < q1/q2 < ∞. As for the homogeneous case
q1 = q2, it can be shown that the Hubbard model on
the inhomogeneous lattice remains well-defined and non-
trivial if the hopping integral is scaled appropriately, e.g.
t = t∗/

√
q1 + q2 = t∗∗/

√
q1 with t∗, t∗∗ = const. As a

consequence, the self-energy Σα(ω) is local but sublattice
dependent. The lattice problem can be mapped onto two
impurity models that are characterized by hybridization
functions ∆α(ω). The DMFT self-consistency equations
read:

∆α(ω) = ω − (εd − µ)−Σα(ω)−Gα(ω)−1, (20)

where Gα(ω) is the on-site Green function for a site i
within the sublattice α. One easily verifies that the free
(U = 0) local density of states on each sublattice is sym-
metric and that µ = U/2 at half-filling. Furthermore, with
q1, q2 7→ ∞, we obtain from the lattice Dyson equation:

Gα(ω)−1 = ω + µ−Σα(ω)− qαt2Gα(ω). (21)

The linearized DMFT for U 7→ Uc iterates the one-pole
ansatz ∆α(ω) = ∆

(α)
N /ω. From equations (20, 21) we

have ∆α(ω) = qαt
2Gα(ω) for α = 1, 2. This implies that

the quasiparticle peak for the sublattice α with weight
zα = (36/U2)∆(α)

N generates a corresponding peak in
∆α(ω) with the weight ∆(α)

N+1 = qαt
2zα. Thus we get:

∆
(α)
N+1 =

∑
β

Kαβ(U)∆(β)
N , (22)

where the 2× 2 matrix K(U) is defined as:

K(U) =
36t2

U2

(
0 q1
q2 0

)
. (23)

A fixed point of K(U) corresponds to a self-consistent so-
lution. Let λr(U) denote the eigenvalues of K(U). We can
distinguish between two cases: if |λr(U)| < 1 for r = 1
and r = 2, there is the trivial solution limN 7→∞∆

(α)
N = 0

only (insulating solution for U > Uc). On the other hand,
if there is at least one λr(U) > 1, ∆(α)

N diverges expo-
nentially as N 7→ ∞ (metallic solution for U < Uc). The
critical interaction is thus determined via the maximum
eigenvalue by the condition:

λmax(Uc) = 1. (24)

This yields:

Uc = 6t 4
√
q1q2, (25)
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i.e. the geometrical mean of the critical interactions of two
homogeneous Bethe lattices with coordination numbers q1

and q2, respectively. The result recovers the homogeneous
case q1 = q2 and correctly gives Uc = 0 for the atomic
limit q1 7→ 0 or q2 7→ 0.

The analysis can be generalized straightforwardly to
an arbitrary number of s sublattices Q1, . . . , Qs. We con-
sider a Bethe lattice where each site of the sublattice Qα
has (qα − 1) nearest neighbors belonging to the sublat-
tice Qα+ and one nearest neighbor in the sublattice Qα−
where α± ≡ α ± 1 except for α = s (here α+ ≡ 1) and
α = 1 (α− ≡ s). In the limit qα 7→ ∞ with fixed pairwise
ratios 0 < qα/qβ <∞, we have:

Gα(ω)−1 = ω + µ−Σα(ω)− qαt2Gα+(ω), (26)

and the argument proceeds as above. We finally arrive
at the mean-field equation (22) with K(U) being an s-
dimensional matrix with s non-zero elements:

K(U) =
36t2

U2


0 q1

0 q2
0 ..
.. qs−1

qs 0

 . (27)

This implies:

Uc = 6t

(
s∏

α=1

qα

)1/2s

. (28)

Again, this is plausible since qα = 0 for any α would mean
to cut the lattice into unconnected pieces of finite size, and
the Mott transition becomes impossible (Uc = 0).

Also the s 7→ ∞ limit of equation (28) is meaningful:
consider e.g. qα=1 6= q ≡ q2 = q3 = . . . . This describes a
Bethe lattice with coordination number q for all sites ex-
cept for one distinguished impurity site with coordination
number q1. As expected physically, Uc is unaffected by the
presence of the impurity. Furthermore, in any case where
one changes the number of nearest neighbors of a finite
number of sites only, the value for Uc remains unchanged.

3.3 General inhomogeneous Bethe lattice

We finally tackle the “inverse” problem: given a matrix
K, is there a realization of a (Bethe) lattice such that the
critical interaction is determined by the maximum eigen-
value of K? For this purpose we consider the Hubbard
model with nearest-neighbor hopping on a general inho-
mogeneous Bethe lattice where each site i may have a
different coordination number. Remaining spatial symme-
tries are accounted for by classifying the lattice sites into
sublattices Qα that consist of equivalent sites only. By
qαβ we denote the number of nearest neighbors of a site
i ∈ Qα that belong to the sublattice Qβ. We are interested
in the limit qαβ 7→ ∞ with 0 < qαβ/qγδ < ∞ since this
implies a local but α-dependent self-energyΣα(ω). Within
the DMFT this Hubbard model is mapped onto impurity

models which are labeled by the sublattice index α. The
self-consistency conditions are given by equation (20).

Let G(0)
α (ω) ≡ Gα(ω) be the on-site Green function

for a site i in Qα, and G
(n)
αnαn−1···α1α(ω) = 〈〈ciσ ; c†jσ〉〉ω

the off-site Green function for nth nearest-neighbor sites
i ∈ Qαn and j ∈ Qα. G(n) depends on the sublattice
indices that are met along the (unique) path from j to i.
Via its equation of motion, G(0)

α couples to the nearest-
neighbor off-site Green function G

(1)
α1α:

(ω + µ−Σα(ω))G(0)
α (ω) = 1 + t

∑
α1

qαα1G
(1)
α1α(ω). (29)

For a Bethe lattice the nearest-neighbor Green function
G

(1)
α1α can only couple to G(2)

α2α1α and to G(0)
α again. More

generally, the equation of motion for the nth nearest-
neighbor off-site Green function reads:

(ω + µ−Σαn(ω))G(n)
αn···α1α(ω) =

tG
(n−1)
αn−1···α1α(ω) + t

∑
αn+1

qαnαn+1G
(n+1)
αn+1···α1α(ω), (30)

where in the second term on the r.h.s. we have used the
approximation qαβ − 1 ≈ qαβ which becomes exact in the
limit of infinite coordination numbers. The infinite series
defined by equations (29, 30) can formally be summed up.
This yields:

Gα(ω)−1 = ω + µ−Σα(ω)− t2
∑
β

qαβGβ(ω). (31)

The mean-field equation of the linearized DMFT thus has
again the form (22) where the K-matrix is given by:

Kαβ(U) =
36t2

U2
qαβ . (32)

The critical interaction is given by 6t times the maximum
eigenvalue of the coordination-number matrix q. Note
that for a general (non-symmetric), irreducible matrix
with non-negative elements, the eigenvalue with maximum
absolute value is real and non-negative (Perron-Frobenius
theorem [21]). Thus we conclude that any quadratic ma-
trix K with non-negative elements can be related to the
Mott transition on a Bethe lattice with certain (infinite)
coordination numbers.

3.4 Hypercubic films

As a more realistic example for the Mott transition on
an inhomogeneous lattice we consider a hypercubic Hub-
bard film. A D-dimensional film is built up from a num-
ber d of (D − 1)-dimensional “layers”. For a hypercubic
film these layers are cut out of the usual D-dimensional
hypercubic lattice. A set of Miller indices [x1, x2, . . . , xD]
characterizes the film-surface normal direction. The most
simple films are those with low-index surfaces given by
x1 = · · · = xr = 1 and xr+1 = · · · = xD = 0. For any site
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in the film except for sites at the film surfaces there are
q1 = 2D−2r nearest neighbors within the same layer and
q2 = r nearest neighbors in each of the adjacent layers;
the total coordination number is q = q1 + 2q2 = 2D.

For D 7→ ∞ the Hubbard model is well defined with
the usual scaling of the hopping t = t∗/

√
2D, the self-

energy becomes local but layer dependent and dynami-
cal mean-field theory is exact [22]. The lattice problem is
mapped onto a set of d impurity problems. The DMFT
self-consistency conditions are given by equation (20)
where the index α now has to be interpreted as the layer
index: α = 1, . . . , d.

The linearized DMFT can be developed as in Section 2.
Equation (8), however, is no longer valid and must be re-
placed by the Dyson equation corresponding to the given
film geometry. The coherent part of the on-site Green
function for a site in the layer α is given by:

Gα(ω) = zαG̃α(ω) =
zα

ω − M̃ (α)
2 Fα(ω)

(33)

where zα is the layer-dependent quasiparticle weight, zα =
(1−∂Σα(i0+)/∂ω)−1 and G̃α(ω) is the on-site element of
the free (U = 0) Green function but calculated for the
renormalized hopping tij 7→

√
zi tij

√
zj with zi = zα for

a site i in the layer α. In the expression on the right,
M̃

(α)
2 denotes the corresponding second moment which is

calculated as M̃ (α)
2 = zα(q1zα + q2zα−1 + q2zα+1)t2. This

means that the linearized mean-field equation has again
the form (22) with the following d-dimensional tridiagonal
matrix:

K(U) =
36t2

U2

 q1 q2
q2 q1 q2
q2 q1 ..

.. ..

 . (34)

Its eigenvalues are the zeros of the dth degree Chebyshev
polynomial of the second kind [23]. From the maximum
eigenvalue we obtain:

Uc = 6t

√
q1 + 2q2 cos

(
π

d+ 1

)
. (35)

Equation (35) describes the complete thickness and geom-
etry dependence of the critical interaction for the Mott-
Hubbard transition in hypercubic Hubbard films.

In the limit of thick films d 7→ ∞ one recovers the bulk
value Uc = 6t

√
q1 + 2q2. For d < ∞ the critical interac-

tion not only depends on the film thickness d but also
on the geometry of the film surface which is character-
ized by r. Varying r we can pass continuously from the
most closed (r = 1) to the most open (r = D) surface
geometry. For r = 1, i.e. a (1000...) film surface, a site
in the topmost layer has qS = q1 + q2 = 2D − 1 near-
est neighbors to be compared with q = 2D in the bulk.
For D 7→ ∞ the local environment of the surface sites
is essentially the same as in the bulk, i.e. surface effects
become meaningless. Consequently, we get Uc = 6t∗, i.e.
the bulk value irrespective of d. For r = D one obtains

the open (1111...) film surface. The surface coordination
number is reduced to qS = q2 = D. The critical interac-
tion is Uc = 6t∗

√
cos(π/(d+ 1)) which is smaller than 6t∗

for any d.
Equation (35) can also be applied to finite-dimensional

films (D < ∞) if one additionally assumes the local ap-
proximation for the self-energy functional to hold. For
D = 3 simple-cubic films with a thickness ranging from
d = 1 up to d = 8 and for sc(100), sc(110) and sc(111)
film surfaces, the prediction (35) of the linearized DMFT
has been tested in reference [22] by comparing with the
results for Uc of a fully numerical evaluation of the DMFT
equations using the exact diagonalization of small impu-
rity models (ns = 8). It is found that the linearized DMFT
qualitatively and – as far as can be judged from the nu-
merical evaluation – also quantitatively predicts the cor-
rect geometry and thickness dependence of Uc [22].

3.5 Critical exponent and critical profiles

So far the discussion was restricted to the calculation of
the critical value Uc which is derived from a linear ho-
mogeneous mean-field equation (Eqs. (17, 22)). To deter-
mine the critical behaviour of the quasiparticle weight z
for U 7→ Uc, one has to go beyond the linearized DMFT.
For this purpose a simple generalization of the arguments
in Section 2 is necessary.

We replace the second-order result for the quasiparticle
weight z = 36V 2/U2 (Eq. (6)) by the result up to fourth
order in V/U :

z = 36
V 2

U2

(
1− 44

V 2

U2

)
. (36)

With the same steps as before, one arrives at:

∆N+1 =
(

1− 44
∆N

U2

)
36
U2

M2∆N , (37)

which is a non-linear equation for the “mean field” ∆. The
self-consistency requires ∆N+1 = ∆N = ∆. Solving for ∆
yields:

∆ =
1
22
Uc (Uc − U) , (38)

where we have already expanded the right hand side in
powers of (Uc−U). The result for the quasiparticle weight
near Uc is

z =
18
11
Uc − U
Uc

· (39)

This equation is, of course, only valid for U < Uc. We ob-
tain a linear vanishing of the quasiparticle weight near the
metal-insulator transition. The equation that determines
the quasiparticle weight near the critical interaction can
be put into the form z = (α/2)(1− (U/Uc)2). This is rem-
iniscent of the Brinkman-Rice result [7]. The difference
consists in the value for the coefficient α which is α = 2
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within the Brinkman-Rice approach and α = 18/11 within
the simplified DMFT. Compared with numerical results,
however, α = 18/11 still seems to be too large. Exact-
diagonalization results for ns = 8 sites [10] yield a similar
or a significantly smaller value depending on the details of
the method [24,25]. A smaller value is also found within
the PSCM which yields α = 0.9±0.15 [10]. The NRG [16]
gives a value α � 1, but a precise determination is not
possible.

For the Hubbard model on an inhomogeneous lattice,
the self-energy and thus the quasiparticle weight is site or
sublattice dependent: zα = (1−∂Σα(i0+)/∂ω)−1. Within
the linearized DMFT (Eq. (22)), the critical interaction is
determined from the largest eigenvalue λmax(Uc) = 1 in
the eigenvalue problem

zα =
∑
β

Kαβ(Uc)zβ . (40)

The corresponding eigenvector zα = zα(Uc) describes the
critical profile of the quasiparticle weight. The profile
is uniquely determined up to a normalization constant.
While zα(U) 7→ 0 for each α as U 7→ Uc, the ratios
zα(Uc)/zβ(Uc) remain to be non-trivial. For example, in
the two-sublattice model characterized by equation (23),
the critical profile is given by z1(Uc)/z2(Uc) =

√
q1/q2.

To determine the critical behaviour of the α-dependent
quasiparticle weight for U 7→ Uc but U < Uc, we again
have to expand up to fourth order in Vα/U . This yields
the following mean-field equation:

zα(U) =
∑
β

Kαβ(U) zβ(U)− 11
9
z2
α(U). (41)

For the two-sublattice model we obtain:

z1,2(U) =
36
11

√
q1,2√

q1 +
√
q2

Uc − U
Uc

· (42)

For q1 = q2 this result reduces to equation (39).

4 Conclusions

We have discussed a “linearized” version of the Dynami-
cal Mean-Field Theory which allows for the analytical cal-
culation of the critical interaction for the Mott-Hubbard
metal-insulator transition at T = 0. The main result is:

Uc = 6

√∫
dε ε2ρ(ε) = 6

√∑
j

t2ij , (43)

which shows that it is the second moment of the non-
interacting density of states which determines Uc. The
values for Uc obtained with the linearized DMFT have
been compared with the available results from numerical
solutions of the full DMFT equations, and a good agree-
ment is found.

The linearized DMFT is of course not able to answer
detailed questions about the nature of the Mott-Hubbard

transition, such as the existence or absence of a hysteresis,
the order of the transition, etc. Its advantage is that it can
be easily generalized to a variety of geometries. To obtain
the critical interaction, it is sufficient to find the maximum
eigenvalue of the respective coordination-number matrix,
the dimension of which is determined by the remaining
spatial symmetries (see e.g. Eq. (32)). The analytical re-
sults for e.g. the metal-insulator transition in thin Hub-
bard films have been checked against numerical solutions
of the full DMFT equations, and the geometry dependence
has been found to be essentially the same, in the DMFT
and in the linearized DMFT.

The results from the linearized DMFT show some sim-
ilarities (but also differences) to the Brinkman-Rice sce-
nario. Both methods give an analytical expression for
Uc but the dependence on the non-interacting density
of states is quite different: Uc,BR ∝

∫ 0

−∞ dε ερ(ε) and
U2

c,LDMFT ∝
∫∞
−∞ dε ε2ρ(ε). The behaviour of the quasi-

particle weight near Uc is linear in both methods with a
difference, however, in the slope: zBR = 2(1− U/Uc) and
zLDMFT = 18

11 (1 − U/Uc). Conceptually, both approaches
project the full onto an effective low-energy problem that
is characterized by a single parameter z only. The start-
ing point, the necessary assumptions and the realization
of the respective approach are, however, quite different.

The linearized DMFT might be considered as a re-
alization of the Exact-Diagonalization (ED) technique
[24,25] with a minimum number of sites: ns = 2 (one
impurity and one bath site). The difference to such a
lowest-order ED is, however, that in the linearized DMFT
a special criterion is used to define the parameters of
the effective (two-site) Anderson model, namely only the
low-energy peaks in the spectral functions are used (see
Sect. 2). On the other hand, the fit procedure of Caffarel
and Krauth [25] partly involves the high-energy degrees
of freedom as well – even for ns = 2. The same holds
for the ED approach of Rozenberg et al. [24] which be-
comes identical with the latter for ns = 2. However, since
only the low-energy spectral function is relevant for the
determination of the low-energy part of the hybridization
function via the DMFT self-consistency equation, the lin-
earized DMFT is conceptually superior compared with a
simple ns = 2-site ED.

The linearized DMFT is best characterized as be-
ing the lowest-order realization of the projective self-
consistent method [10,17] which in general can only be
evaluated numerically. Assuming the separation of low-
and high-energy scales for U 7→ Uc, the PSCM exactly
maps the full onto an effective (low-energy) Kondo prob-
lem by a generalized Schrieffer-Wolff canonical trans-
formation. If we adopt the same two approximations
described in Section 2, namely (i) neglecting the high-
energy conduction-band states and (ii) ignoring any in-
ternal structure of the quasi-particle peak, one obtains
within the PSCM a Kondo problem in the atomic limit
with a coupling Jspin = −4D/U (using the notations of
Ref. [10],D is the half band width of the Bethe DOS). This
can be solved analytically and eventually yields a critical
interaction of Uc = 3D for the Bethe lattice which
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coincides with the value of the linearized DMFT (see
Sect. 3.1).

Obviously, the linearized DMFT could be improved by
taking into account more states for the effective conduc-
tion band (in the Hubbard bands and/or the quasiparticle
peak). However, its main advantage – the possibility to ob-
tain analytical results for Uc – would then be immediately
lost, and one would essentially recover the PSCM which
must be evaluated numerically.

To estimate to what extent an improved description
of the low- or high-energy degrees of freedom would af-
fect the value for the critical interaction, let us consider
the equation that determines Uc within the PSCM [10]:
1 = (1/2)J2

spin(3/8− 〈S · slow〉). Using approximation (ii),
one obtains an atomic-limit Kondo problem which im-
plies 〈S · slow〉 = −3/4 for the spin-spin correlation func-
tion. This may be compared with the numerical value
〈S · slow〉 ≈ −0.46 [17]. Together with Jspin = −4D/U
(using (i)) the above PSCM equation implies a decrease
of Uc by about 14% when starting from the linearized the-
ory and then including all low-energy degrees of freedom
(Uc = 3D 7→ Uc = 2.585D). This decrease must be com-
pensated almost perfectly by a corresponding increase of
Uc when including all high-energy degrees of freedom ad-
ditionally, because the linearized-DMFT result Uc = 3D
is very close to the numerically exact value (Sect. 3.1). In
fact, the influence of the Hubbard bands is not completely
negligible. Within the NRG approach [26], the iteration of
the DMFT equations without the Hubbard peaks but in-
cluding the full low-energy information yields a critical
interaction of Uc ≈ 2.5D. We conclude that the excellent
agreement between the results of the linearized and the
full theory (Sect. 3.1) is partly due to error cancellation.

Finally, we like to emphasize once more the main ad-
vantage of the present approach: the possibility to cal-
culate a reliable estimate for the critical interaction an-
alytically and for arbitrary geometries. It would be very
interesting to see whether experiments on Mott-Hubbard
systems in different geometries will show similar trends as
predicted by the linearized DMFT.

We would like to thank A.C. Hewson, W. Nolting, and Th.
Pruschke for discussions. R. B. thanks the Max-Planck-Institut
für Physik komplexer Systeme in Dresden for hospitality while
part of this work was done. The support by the Deutsche
Forschungsgemeinschaft within the SFB 290 is gratefully
acknowledged.

References

1. N.F. Mott, Proc. Phys. Soc. London Sect. A 62, 416
(1949); Metal-Insulator Transitions, 2nd edn. (Taylor and
Francis, London, 1990).

2. F. Gebhard, The Mott Metal-Insulator Transition,
Springer Tracts in Modern Physics (Springer, Berlin,
1997), Vol. 137.

3. J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).
4. M.C. Gutzwiller, Phys. Rev. Lett. 10, 59 (1963).
5. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
6. J. Hubbard, Proc. R. Soc. London A 281, 401 (1964).
7. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970).
8. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989);

for an introduction, see D. Vollhardt, Int. J. Mod. Phys.
B 3, 2189 (1989).

9. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); T. Pruschke,
M. Jarrell, J.K. Freericks, Adv. Phys. 44, 187 (1995).

10. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

11. S. Kehrein, Phys. Rev. Lett. 81, 3912 (1998).
12. D.E. Logan, P. Nozières, Philos. Trans. R. Soc. London A

356, 249 (1998).
13. R. Noack, F. Gebhard, Phys. Rev. Lett. 82, 1915 (1999).
14. J. Schlipf, M. Jarrell, P.G.J. van Dongen, S. Kehrein, N.
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